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Abstract. In the coordinate representation of thermofield dynamics, we investigate the
thermalized displaced squeezed thermal state which involves two temperatures successively. We
give the wavefunction and the matrix element of the density operator at any time, and accordingly
calculate some quantities related to the position and particle number operator, special cases of which
are consistent with the results in the literature. The two temperatures have different correlations
with the squeezing and coherence components. Moreover, different from the properties of the
position, the average value and variance of the particle number operator as well as the second-order
correlation function are time independent.

Introducing finite temperature effects into squeezed states (including squeezed vacuum,
squeezed displaced and displaced squeezed states) is important, because a squeezed state
can possesses minimum uncertainty, squeezability and accordingly technological applicability
[1], and a finite-temperature influence on it is inevitable. This problem has received extensive
investigations and a variety of squeezed states with finite temperature effects were constructed
and investigated within different formalisms [2–11]. Based on them, [2, 3] classified these
states into the thermalized squeezed states [4–6] and the squeezed thermal states [7–11]. Both
of these two types of states are physically distinct states, although they can be transformed
into each other by some parameter transformation [3]. Each of these two states has several
possible representations, and [2] gave a detailed discussion about them and elucidated their
physical interpretation. From [2], it is not difficult to understand that the squeezed thermal
states correspond to the output from a squeezed device whose input is a thermal chaotic
state with a Bose–Einstein distribution, while the thermalized squeezed states are prepared
by thermalizing a squeezed state provided the thermalizing source is such that it can bring a
vacuum state into a thermal chaotic state. Hence the two types of states represent two different
ways of introducing a finite temperature into squeezed states: one is to introduce the thermal
effects before squeezing and the other after squeezing, and each of them is close to practical
cases (an absolutely pure squeezed state is impossible).

However, more practically and generally, perhaps we should consider thermal effects
both before squeezing and after squeezing. From a theoretical viewpoint, since both the
thermalized squeezed states and the squeezed thermal states have been investigated, it is natural
and interesting for one to consider a general type of state which can take the above two types
of states as its special cases. Furthermore, from a practical standpoint, such a general state
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is a more real state than the squeezed states in the literature. As a matter of fact, when a
squeezing device acting on a ground state produces a squeezed state, not only the input but
also the output would be mixed with thermal noise. For example, in the possible measurement
of gravitational waves proposed by Caves [12], when a Michelson interferometer works with
the light, the light will be the mixture of the laser light in a coherent state and the squeezed
vacuum state from the output from a degenerate parameter amplifier whose input is a ground
state [12]. Because of the inevitable existence of thermal noise, the input from the ground
state will be a thermal chaotic state at some temperature, and also both the output from the
degenerate parameter amplifier and the laser will be mixed with the environmental thermal
noise whose temperature will perhaps be different from the temperature of the input. Thus,
strictly speaking, the light reflected by the mirrors in the Michelson interferometer is the
mixture of a coherent state with thermal noise and a squeezed state with thermal noise pre-
and post-squeezing the ground state. For another example, in optical communication, consider
light in a squeezed displaced state which will be the output from a squeezing device whose
input is a coherent state [13]. It is evident that, in fact, the signal entering the squeezing device
would be in a coherent state with thermal noise pre- and post-displacing the ground state, and
in the course of the transmission the squeezed displaced thermal light would be mixed with
thermal noise in the fibre. That is to say, the signal transmitted in the fibre should be in a
squeezed displaced state with thermal noise pre-displacing and post-squeezing it. Yet another
example is a trapped ion in a squeezed state. Recently, a trapped ion has been first cooled to a
ground state and then stimulated to a coherent state as well as a squeezed vacuum state [14].
One can predict that in the not too distant future various squeezed states of a trapped ion will
be prepared. Again owing to the thermal noise, a trapped ion in a squeezed state must be mixed
with noise both before and after squeezing. In other words, for a squeezing device (including
a combination of the squeezing and displacement devices), its input would be accompanied by
thermal noise, its output would also encounter thermal noise, and hence to introduce thermal
effects into a squeezed state both pre- and post-squeezing a ground state is necessary and more
practical. Of course, perhaps the thermal effect will not be strong when the temperatures are
very low, but no matter how weak it is in this case the thermal noise really exists before and
after squeezing.

In this paper, we intend to construct such a general squeezed state with thermal
effects which we call the thermalized displaced squeezed thermal state (TDSTS). Within the
framework of thermofield dynamics [15, 16], we shall first give the definition of the thermalized
displaced squeezed thermal state, and then give the time-dependent wavefunction and calculate
the matrix elements of the density operator in the coordinate representation. From the density
matrix elements, the probability density, the average value and variance of the position will be
discussed. Finally, we shall also give the average value and variance of the particle number
operator and the second-order correlation function.

This paper is based on a one-dimensional quantum oscillator with massm and a constant
angular frequencyω whose Hamiltonian is

H = 1

2m
p2 +

1

2
mω2x2 = (a†a + 1

2

)
h̄ω (1)

wherex is the position operator,p = −ih̄d/dx ≡ −ih̄∂x is the momentum operator in the
coordinate representation, and

a = 1√
2mh̄ω

(ip +mωx) a† = 1√
2mh̄ω

(−ip +mωx) (2)

are the annihilation and creation operators, respectively. Nevertheless, taking the mass as
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unity in the formulae of this paper, one can find results which are usable for a one-mode
electromagnetic field with the same frequency.

As is well known, a displaced squeezed state can be constructed by the squeezing and
displacement operators acting successively on the ground state|0〉of the oscillator, equation (1)
[17]. The displacement operator

D(α) = eαa
†−α∗a (3)

with α = (α1 + iα2) = |α|eiγ any complex number, corresponds to an ideal displacement
device (the symbol ‘| · · · |’ represents the modulus of a complex number), and the squeezing
operator

S(z) = exp
{− 1

2(z
∗aa − za†a†)

}
(4)

with z = z1 + iz2 = reiφ any complex number, corresponds to an ideal squeezing device. (In
equation (4), the minus ‘−’ before ‘12’ is sometimes replaced by a plus ‘+’ in the literature,
which gives rise to no essential differences.) The action of the displacement operator following
the squeezing operator on the ground state will yield the displaced squeezed stateD(α)S(z)|0〉
(here the aforementioned squeezing device is really a combination of the displacement and
squeezing devices), and a squeezed displaced stateS(z)D(α)|0〉 can also be constructed by
the action of the squeezing operator following the displacement operator. Note that through
a parameter transformation the statesD(α)S(z)|0〉 andS(z)D(α)|0〉 can be transformed into
each other, because one has [18]

S(z)D(α) = D(α cosh(r) + α∗eiφ sinh(r))S(z). (5)

So this paper involves the displaced squeezed states only.
In order to consider finite temperature effects, thermofield dynamics [15] introduces a

copy of the physical oscillator equation (1) (called the tildian oscillator)

H̃ = 1

2m
p̃2 +

1

2
mω2x̃2 = (ã†ã + 1

2

)
h̄ω (6)

according to the tildian ‘conjugation’:̃CO ≡ C∗Õ [15]. Here,C is any coefficient appeared
in expressions of quantities for the physical system,O any operator, the superscript ‘∗’ denotes
complex conjugation and̃O represents the corresponding operator for the tildian system. Based
on the physical and tildian oscillators, thermofield dynamics manufactures a thermal operator
T (θ)

T (θ) = exp{−θ(β)(aã − a†ã†)} = exp

{
i
θ

h̄
(xp̃− x̃p)

}
(7)

with

tanh[θ(β)] = e−βh̄ω/2

andβ = 1/kbT . Here,kb is the Boltzmann constant andT is the temperature. The thermal
operator is invariant under the tildian conjugation, i.e.T̃ (θ) = T (θ). Letting T (θ) act on
the direct product of the physical ground state|0〉 and the tildian ground state|0̃〉, one can
manufacture a thermal vacuum. Notice that any physical operator commutes with any tildian
operator, physical operators act on physical states only and similarly tildian operators on tildian
states only. Consequently, thermal-vacuum average values in thermofield dynamics agree with
canonical ensemble average values in statistical mechanics [15]. When the thermal operator
acts on the direct product of the free electromagnetic field vacuum and its tildian counterpart,
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one can obtain a thermal chaotic state which describes a thermal chaotic light with a Bose–
Einstein distribution at a finite temperatureT . That is to say, generally, the thermal operator
T (θ) represents the action of a thermal source.

Now we can give the definition of the TDSTS. SinceT (θ) is involved in the physical and
tildian operators simultaneously, we shall use both the physical operatorsD(α), S(z) and their
tildian counterparts̃D(α), S̃(z) when a finite temperature effect is introduced into a displaced
squeezed state (the tildian operatorsD̃(α) andS̃(z) were not adopted in [2]). BecauseT (θ)
commutes withS(z)S̃(z) [3] and does not commute withD(α)D̃(α), we can define a state
which involves two thermal sources with different temperatures successively. The following
TDSTS,

|β2, α, z, β1, 0〉 ≡ T (θ2)D(α)D̃(α)S(z)S̃(z)T (θ1)|0〉|0̃〉 (8)

whereβ1, θ1 and β2, θ2 correspond to those at the temperaturesT1 and T2, respectively.
Furthermore, the time evolution of the TDSTS can be considered by the evolution operator
Û (t) = exp{−(i/h̄)(H − H̃ )} acting on the TDSTS, i.e.

|t, β2, α, z, β1, 0〉 = Û (t)|β2, α, z, β1, 0〉 (9)

wheret is the time. Obviously, the displaced squeezed thermal state (DSTS) [2, 3, 9] is the
TDSTS forT2 = 0, the thermalized displaced squeezed state (TDSS) forT1 = 0, and the
thermalized coherent thermal state forz = 0. The TDSTS equation (8) with proper parameter
constraints and transformation can be reduced to almost all the cases discussed in [2–11]
except for the displaced thermalized squeezed states defined by a density matrix in [2]. The
TDSTS can be prepared by thermalizing a DSTS [9] (second reference), and can describe the
practical examples listed in the second paragraph. The TDSTS involves two thermal sources
successively and contains both the pre- and post-displacing squeezing thermal noise atT1 and
T2, respectively. For the sake of convenience, we call the thermal noise atT2 the detector
thermal noise and the thermal noise atT1 the input thermal noise.

In the coordinate representation, all the displacement, squeezing and thermal operators can
be untangled [19, 20]. Moreover, if we exploit the thermal coordinate representation introduced
in [20], one can easily untangle the evolution operatorÛ (t). Hence one can obtain the explicit
expression of the time-dependent wavefunction〈x̃, x|t, β2, α, z, β1, 0〉. Alternatively, noticing
thatD(α)D̃(α)T (θ) = T (θ)D(α(cosh(θ)− sinh(θ)))D̃(α(cosh(θ)− sinh(θ))) [21], one has
|t, β2, α, z, β1, 0〉 = |t, β2, β1, α(cosh(θ1) − sinh(θ1)), z,0〉 and can easily obtain the time-
dependent wavefunction with the help of the result in [20]. Takingn = 0, θ = θ1 + θ2 and the
replacementα→ α(cosh(θ1)− sinh(θ1)) in equation (44) of [20], one can read

〈x̃, x|t, β2, α, z, β1, 0〉 =
(
mω

πh̄

)1/2 1

|F1B| exp

{
−Q
B
− Q

∗

B∗

}
× exp

{
−mω

2h̄
G1(x cosh(2)− x̃ sinh(2))2

+2

√
mω

2h̄
G2(cosh(θ1)− sinh(θ1))(x cosh(2)− x̃ sinh(2))

}
× exp

{
−mω

2h̄
G∗1(x̃ cosh(2)− x sinh(2))2

+2

√
mω

2h̄
G∗2(cosh(θ1)− sinh(θ1))(x̃ cosh(2)− x sinh(2))

}
(10)
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where

F1 = cosh(r) + sinh(r) cos(φ) + i sinh(r) sin(φ)

F2 = 1− i sinh(2r) sin(φ)

cosh(2r) + sinh(2r) cos(φ)
2 = θ1 + θ2 B = cos(ωt) + iF2 sin(ωt)

G1 = F2 cos(ωt) + i sin(ωt)

B
G2 = F2α1 + iα2

B

and

Q = [F2 cos(ωt) α2
1 + 2F2 sin(ωt) α1α2 + i sin(ωt) α2

2](cosh(θ1)− sinh(θ1))
2.

Equation (10) is the time-dependent wavefunction of the TDSTS in the coordinate
representation, and all information of the TDSTS can be extracted from it.

With the help of equation (10), a straightforward calculation yields the density matrix
elementρx ′,x(t) on the position for the TDSTS

ρx ′,x(t) ≡
∫ ∞
−∞
〈x̃, x|t, β2, α, z, β1, 0〉〈0, β1, z, α, β2, t |x ′, x̃〉 dx̃

=
√
mω

πh̄

1

|F1B|

√
1

cosh(22)
exp

{ |F1B|2
2 cosh(22)

coth
(

1
4β2h̄ω

)
(G2 −G∗2)2

}
× exp

{
−mω

4h̄

1

|F1B|2 cosh(22)

[
x + x ′ −

√
2h̄

mω

√
coth

(
1
4β2h̄ω

)( α
A

+
α∗

A∗

)]2

−mω
4h̄

cosh(22)

|F1B|2
[
x − x ′ −

√
2h̄

mω

|F1B|2
cosh(22)

√
coth

(
1
4β2h̄ω

)
(G2 −G∗2)

]2

−mω
4h̄
(G1−G∗1)(x2 − x ′2)

}
(11)

with A = cos(ωt)+ i sin(ωt). This density matrix is complex, Hermitian and time dependent.
Whenz = 0 equation (11) gives the density matrix of the position for thermalized coherent
thermal statesT (θ2)D(α)D̃(α)T (θ)|0〉|0̃〉 which contains the thermalized coherent state and
the coherent thermal state as its special cases. At the initial timet = 0 andT2 = 0, equation (11)
is reduced to the density matrix element of the position for the DSTS,

ρx ′,x =
√
mω

πh̄

1

|F1|

√
1

cosh(2θ1)
exp

{ |F1|2
2 cosh(2θ1)

[(F2 − F∗2 )α1 + i2α2]2

}
× exp

{
−mω

4h̄

1

|F1|2 cosh(2θ1)

[
x + x ′ −

√
2h̄

mω
2α1

]2

−mω
4h̄
(F2 − F∗2 )(x2 − x ′2)

−mω
4h̄

cosh(2θ1)

|F1|2
[
x − x ′ −

√
2h̄

mω

|F1|2
cosh(2θ1)

((F2 − F∗2 )α1 + i2α2)

]2}
(12)

which is identical to equation(6.5a) in [9] (second reference). Of course, settingT1 = 0, one
can obtain the density matrix element of the TDSS. Noticing

cosh(22) = coth
(

1
2β1h̄ω

)
coth

(
1
2β2h̄ω

)
+ cosech

(
1
2β1h̄ω

)
cosech

(
1
2β1h̄ω

)
(13)

and cosh(θ) = coth
(

1
2βh̄ω

)
, one can see that the differences both among the density

matrices of the TDSTS, the DSTS as well as the TDSS and among the finite temperature
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influences on these states consist in the appearance or disappearance of the four factors
cosh(22), cosh(2θ1), cosh(2θ2) and coth

(
1
4β2h̄ω

)
. In the expression of the density matrices,

the factors cosh(22), cosh(2θ1) and coth
(

1
4β2h̄ω

)
appear for the TDSTS, the factors

cosh(2θ2) and coth
(

1
4β2h̄ω

)
for the TDSS, and for the DSTS the factor cosh(2θ1) replaces

cosh(22).
Takingx ′ = x in equation (11), we have the probability density of the position for the

TDSTS

ρx,x(t) =
√
mω

πh̄

1

|F1B|

√
1

cosh(22)
exp

{
−mω
h̄

1

|F1B|2 cosh(22)

×
[
x −

√
h̄

2mω

√
coth

(
1
4β2h̄ω

)( α
A

+
α∗

A∗

)]2}
. (14)

This is a Gaussian distribution. From the probability density one can easily find the average
value of the position

〈x〉 ≡
∫ ∞
−∞

xρx,x dx =
√

2h̄

mω

√
coth

(
1
4β2h̄ω

) |α| cos(ωt − γ ) (15)

and the position variance

(1x)2 ≡ 〈x2〉 − 〈x〉2 = h̄

2mω
[cosh(2r) + sinh(2r) cos(2ωt − φ)] cosh(22). (16)

Here and subsequently, ‘〈· · ·〉’ denotes ‘〈0, β1, z, α, β2, t | · · · |t, β2, α, z, β1, 0〉’.
From the above results of the position, one can easily write off the corresponding

formulae of the momentum by comparing the momentum representation with the coordinate
representation. Here we do not intend to consider them further.

The squeezing effect can be discussed using the rotated quadrature phase operators (the
definitions here are slightly different from those in both [2] and [17] (the book))

Y1 = 1

2
(ae−iϕ + a†eiϕ) Y2 = 1

2i
(ae−iϕ − a†eiϕ) (17)

which give the quadrature phase operatorsX1 =
√
mω/2h̄ x andX2 =

√
1/2mh̄ω pwhen the

rotated angleϕ = 0. A straightforward calculation yields

(1Y1)
2 ≡ 〈Y 2

1 〉 − 〈Y1〉2 = 1
4 cosh(22)[cosh(2r) + sinh(2r) cos(2ωt + 2ϕ − φ)] (18)

and

(1Y2)
2 ≡ 〈Y 2

2 〉 − 〈Y2〉2 = 1
4 cosh(22)[cosh(2r)− sinh(2r) cos(2ωt + 2ϕ − φ)]. (19)

The last two equations indicate that for the TDSTS, it is always possible to attenuate either
1Y1 or1Y2 at any value ofφ and any timet . At t = 0, equations (18) and (19) are identical
to equation (6.9) in [9] (second reference) whenϕ = 0, T2 = 0, and to equation (3.7) in [2]
whenT2 = 0 and(φ − 2ϕ) = π .

We have discussed the properties related to the position and quadrature phase. Next,
we will give the average value and variance of the particle number operatorn ={
(h̄/2mω)

[
(mω/h̄)2x2 − ∂2

x

] − 1
2

}
and the second-order correlation function. The average

value ofn at any timet is

〈n〉 = 1
2 cosh(22) cosh(2r)− 1

2 + coth
(

1
4β2h̄ω

)|α|2. (20)

Thus, the input thermal noise is correlated only with the squeezing, while the detector thermal
noise takes effects from both the squeezing and the coherence. WhenT2 = 0, equation (20) is
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equation (3.9) in [9](1993) and equation (3.3) in [2]. Exploiting equations (18) and (20), one
can calculate the variance ofn at any time and obtain

(1n)2 ≡ 〈n2〉 − 〈n〉2 = − 1
4 + 1

4 cosh2(22) cosh(4r)

+ cosh(22) coth
(

1
4β2h̄ω

)|α|2[cosh(2r) + sinh(2r) cos(φ − 2γ )]. (21)

Consequently, one has the second-order correlation function at any timet ,

g(2)(0) = 〈n
2〉 − 〈n〉
〈n〉2 = 2 +

[
1
4 cosh2(22) sinh2(2r)− coth2( 1

4β2h̄ω
)|α|4

+ cosh(22) coth
(

1
4β2h̄ω

)|α|2 sinh(2r) cos(φ − 2γ )
]

×[ 1
2 cosh(22) cosh(2r)− 1

2 + coth
(

1
4β2h̄ω

)|α|2]−2
. (22)

WhenT2 = 0 the last equation is identical to equation (3.10) in [9] (second reference). From
equations (20)–(22), one sees that the average value and variance of the particle number
operator and the second-order correlation function are time independent.

In conclusion, this paper has investigated the TDSTS which is a generalization of the
TDSS and the DSTS. In the coordinate representation of thermofield dynamics, we give
the wavefunction and the density matrix with time evolution, and calculate some quantities
related to the position, quadrature phase and particle number at any time. Our results
indicates that the quantities related to the position and the momentum are time dependent,
but the average value and variance of the particle number operator and the second-order
correlation function are time independent. For the influence of the temperature on the
displaced squeezed state, the TDSTS possesses the features both of the TDSS and of the
DSTS, but the finite-temperature effects of the TDSTS are not a simple sum or product
of those of the TDSS and the DSTS. The input thermal noise atT1 influences only the
squeezing component via the factor cosh(22), while the detector thermal noise atT2 has an
additional effect on the coherence component by the factor coth

(
1
4β2h̄ω

)
. The TDSTS takes

various thermal squeezed states in the literature as its special cases, except for the density-
matrix-defined displaced thermalized squeezed state in [2]. For the definition equation (8), if
inserting the thermal operatorsT (θ3), T (θ4) andT (θ5) betweenD(α), D̃(α), S(z) andS̃(z),
respectively, without self-tildian requirement (as [4] (first reference) did), one can obtain a
most generalized displaced squeezed state with finite-temperature effects. However, because
such a state is not invariant under the interchange betweenD(α) andD̃(α) or S(z) andS̃(z),
we believe it is perhaps not meaningful. Thus, we should say, within the framework of
thermofield dynamics, that the TDSTS of this paper is the most generalized squeezed state
with thermal effects. Finally, we want to point out that, if there areM input thermal noise
andN detector thermal noise and the corresponding temperatures areT1,1, T1,2, . . . , T1,M and
T2,1, T2,2, . . . , T2,N , then the physical quantities of such a generalized TDSTS can be given by
taking2 = θ1,1 + θ1,2 + · · · + θ1,M + θ2,1 + θ2,2 + · · · + θ2,N andθ2 = θ2,1 + θ2,2 + · · · + θ2,N in
the results of this paper. We believe that once squeezed states are successfully being used in
optical communication and sensitive measurements, the discussions of the present paper will
be found to be useful.
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